Predicting Structural Elements in German Drama

Janis Pagel*, Nidhi Sihag[†] and Nils Reiter*

University of Cologne*, University of Stuttgart[†]

Nov 18, 2021 @CHR2021

Overview

- Automatic prediction of structural elements of German dramas
 - Act and scene boundaries, speaker tags, stage directions, utterances
- Experiments with different BERT models to predict the location of these elements

ACT 1 Scene 1 Enter Barnardo and Francisco, two sentinels. BARNARDO Who's there? FRANCISCO Nay, answer me. Stand and unfold yourself.

ACT 1

Scene 1

Enter Barnardo and Francisco, two sentinels.

BARNARDO Who's there?

FRANCISCO Nay, answer me. Stand and unfold yourself.

. .

- Act boundaries
- Scene boundaries
- Stage directions
- Speaker tags
- Character speech

ACT 1

Scene 1

cisco, two sentinels.

BARNARDO Who's there?
FRANCISCO Nay, answer me. Stand and unfold yourself.

Enter Barnardo and Fran-

- Act boundaries
- Scene boundaries
- Stage directions
- Speaker tags
- Character speech

ACT 1 Scene 1 Enter Barnardo and Francisco, two sentinels. BARNARDO Who's there? FRANCISCO Nay, an-

swer me. Stand and unfold

yourself.

- Act boundaries
- Scene boundaries
- Stage directions
- Speaker tags
- Character speech

ACT 1 Scene 1 Enter Barnardo and Francisco, two sentinels. BARNARDO Who's there? FRANCISCO Nay, answer me. Stand and unfold yourself.

- Act boundaries
- Scene boundaries
- Stage directions
- Speaker tags
- Character speech

ACT 1 Scene 1 Enter Barnardo and Francisco, two sentinels. BARNARDO Who's there? FRANCISCO Nay, answer me. Stand and unfold yourself.

- Act boundaries
- Scene boundaries
- Stage directions
- Speaker tags
- Character speech

Motivation

- Automatic generation of XML/TEI encoded plays from plain-text/OCRed data
- ► Investigation of what information helps models to distinguish between speech and stage directions

Data

- ► GerDraCor (https://github.com/dracor-org/gerdracor)
 - ► German Plays 1730–1940
 - ▶ 10,021,598 tokens
 - **2**40,794 types
 - ▶ 238,364 sentences

Data

- ► GerDraCor (https://github.com/dracor-org/gerdracor)
 - German Plays 1730–1940
 - ▶ 10,021,598 tokens
 - ▶ 240,794 types
 - ► 238,364 sentences

Table: Distribution of classes on the dataset.

Class	Count	Normalized Count (%)
Act	1,458	0.1
Scene	11,001	0.8
Stage	175,238	12.4
Speaker	316,451	22.4
Speech	906,635	64.2

Experiments

- ► Texts split into sentences using NLTK
- Prediction for each sentence: One of the five classes?
- Baseline: Conditional Random Field (CRF) model
- BERT models:
 - German bert-base-uncased
 - German bert-base-cased

Baseline

- CRF model
- ► Features:
 - Lowercased sentence string
 - Does sentence contain the German word 'Akt'?
 - Does sentence contain words 'Szene' or 'Scene'?
 - Does the sentence begin with uppercase letter?
 - ▶ Does the sentence only contain uppercase letters?
 - Does the sentence contain a digit?

Results

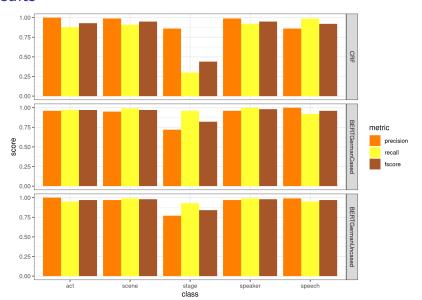


Figure: Results for running the experiments.

English Model

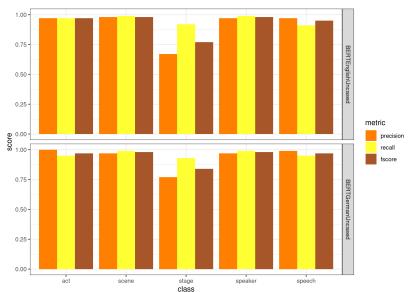


Figure: Comparing an English BERT model with the best German model.

Conclusion

- German bert-base-uncased performed overall the best
- Overt markers like act, scene and speaker are easy to predict (also by the English BERT model)
- The distinction between speech and stage direction is a more challenging task
- BERT models perform well with recall of stage directions, CRF with precision
 - Future work should combine the two models for improved results